#include <stdint.h>
Go to the source code of this file.
Classes | |
struct | r3d_rvec3 |
Vector struct. More... | |
struct | r3d_dvec3 |
Integer vector struct for grid indexing. More... | |
struct | r3d_plane |
A plane. More... | |
struct | r3d_orientation |
Perpendicular distances and bit flags for up to 6 faces. More... | |
struct | r3d_vertex |
A doubly-linked vertex. More... | |
struct | r3d_poly |
A polyhedron. More... | |
struct | r3d_dest_grid |
Destination grid information. More... | |
Macros | |
#define | R3D_MAX_VERTS 64 |
Typedefs | |
typedef double | r3d_real |
Real type specifying the precision to be used in calculations. More... | |
typedef int32_t | r3d_int |
Integer type used for grid indexing and bit flags. More... | |
typedef int64_t | r3d_long |
Long integer type used for grid indexing. More... | |
Functions | |
void | r3d_voxelize_tet (r3d_plane *faces, r3d_dest_grid *grid) |
Voxelize a tetrahedron to the destination grid. More... | |
void | r3d_clip_tet (r3d_poly *poly, unsigned char andcmp) |
Clip a polyhedron against four clip planes (find its intersection with a tetrahedron). More... | |
void | r3d_reduce (r3d_poly *poly, r3d_int polyorder, r3d_real *moments) |
Integrate a polynomial density over a convex polyhedron using simplicial decomposition. More... | |
void | r3du_init_box (r3d_poly *poly, r3d_rvec3 rbounds[2]) |
Initialize a polyhedron as an axis-aligned cube. More... | |
void | r3du_tet_faces_from_verts (r3d_rvec3 *verts, r3d_plane *faces) |
Get four faces (unit normals and distances to the origin) i from a four-vertex description of a tetrahedron. More... | |
r3d_real | r3du_orient (r3d_rvec3 pa, r3d_rvec3 pb, r3d_rvec3 pc, r3d_rvec3 pd) |
Get the signed volume of the tetrahedron defined by the input vertices. More... | |
Macro Definition Documentation
◆ R3D_MAX_VERTS
#define R3D_MAX_VERTS 64 |
Typedef Documentation
◆ r3d_int
typedef int32_t r3d_int |
Integer type used for grid indexing and bit flags.
◆ r3d_long
typedef int64_t r3d_long |
Long integer type used for grid indexing.
◆ r3d_real
typedef double r3d_real |
Real type specifying the precision to be used in calculations.
Default is double
(recommended). float
precision is enabled by compiling with -DSINGLE_PRECISION
.
Function Documentation
◆ r3d_clip_tet()
void r3d_clip_tet | ( | r3d_poly * | poly, |
unsigned char | andcmp | ||
) |
Clip a polyhedron against four clip planes (find its intersection with a tetrahedron).
- Parameters
-
[in,out] poly The polyehdron to be clipped. The distances to the clip plane and bit flags in poly.verts[...].orient
must be set prior to calling this function.[in] andcmp Set of bit flags allowing faces to be skipped. Face f
will be skipped ifandcmp & (1 << f)
evaluates totrue
.
◆ r3d_reduce()
Integrate a polynomial density over a convex polyhedron using simplicial decomposition.
- Parameters
-
[in] poly The polyhedron over which to integrate. [in] polyorder Order of the polynomial density field. 0 for constant (1 moment), 1 for linear (4 moments), 2 for quadratic (10 moments). [in,out] moments Array to be filled with the integration results, up to the sepcified polyorder
. Order of moments is1
,x
,y
,z
,x^2
,y^2
,z^2
,x*y
,y*z
,z*x
.
◆ r3d_voxelize_tet()
void r3d_voxelize_tet | ( | r3d_plane * | faces, |
r3d_dest_grid * | grid | ||
) |
Voxelize a tetrahedron to the destination grid.
- Parameters
-
[in] faces The four faces of the tetrahedron to be voxelized. [in,out] grid The destination grid buffer that the tetrahedron will be voxelized to. The results of the voxelization are found in grid.moments
.
◆ r3du_init_box()
Initialize a polyhedron as an axis-aligned cube.
- Parameters
-
[in,out] poly The polyhedron to initialize. [in] rbounds An array of two vectors, giving the lower and upper corners of the box.
◆ r3du_orient()
Get the signed volume of the tetrahedron defined by the input vertices.
- Parameters
-
[in] pa,pb,pc,pd Vertices defining a tetrahedron from which to calculate a volume.
- Returns
- The signed volume of the input tetrahedron.
◆ r3du_tet_faces_from_verts()
Get four faces (unit normals and distances to the origin) i from a four-vertex description of a tetrahedron.
- Parameters
-
[in] verts Array of four vectors defining the vertices of the tetrahedron. [out] faces Array of four planes defining the faces of the tetrahedron.