|
using | point_t = util::point< T, 2 > |
|
using | element_t = T |
|
|
static bool | within (const point_t &origin, const point_t ¢er, element_t r1) |
|
static bool | within_square (const point_t &origin, const point_t ¢er, element_t r1, element_t r2) |
| Return true if dist^2 < radius^2.
|
|
static bool | within_box (const point_t &min, const point_t &max, const point_t &origin) |
|
static bool | intersects_box_box (const point_t &min_b1, const point_t &max_b1, const point_t &min_b2, const point_t &max_b2) |
| Intersection between two boxes defined by there min and max bound.
|
|
static bool | intersects_sphere_sphere (const point_t &c1, const element_t r1, const point_t &c2, const element_t r2) |
| Intersection of two spheres based on center and radius.
|
|
static bool | intersects_sphere_box (const point_t &min, const point_t &max, const point_t &c, const element_t r) |
|
static bool | box_MAC (const point_t &position_source, const point_t &position_sink, const point_t &box_source_min, const point_t &box_source_max, double macangle) |
|
|
static constexpr element_t | tol |
| Tolerance for the computations. More...
|
|
◆ box_MAC()
Multipole method acceptance based on MAC. The angle === l/r < MAC (l source box width, r distance sink -> source) Barnes & Hut 1986
◆ intersects_sphere_box()
Intersection of sphere and box; Compute the closest point from the rectangle to the sphere and this distance less than sphere radius
◆ within()
Return true if point origin lies within the spheroid centered at center with radius.
◆ within_box()
Return true if point origin lies within the box specified by min/max point.
◆ tol
Initial value:=
std::numeric_limits<element_t>::epsilon() * 10.
Tolerance for the computations.
The documentation for this struct was generated from the following file:
- /home/bergen/devel/tuxfan/flecsi/flecsi/topo/ntree/geometry.hh